Bi-Atom Electrocatalyst for Electrochemical Nitrogen Reduction Reactions
نویسندگان
چکیده
منابع مشابه
High performance platinum single atom electrocatalyst for oxygen reduction reaction
For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/...
متن کاملElectrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells
In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...
متن کاملErratum: High performance platinum single atom electrocatalyst for oxygen reduction reaction
This corrects the article DOI: 10.1038/ncomms15938.
متن کاملSelective nitrogen doping in graphene for oxygen reduction reactions.
Nitrogen-doped graphene materials with abundant pyridinic and quaternary nitrogen species were selectively synthesized by thermal surface polymerization of nitrogen-containing aromatic molecules. Catalytic studies revealed that the oxygen reduction by nitrogen-doped graphene, containing pyridinic and quaternary nitrogen species, proceeds via a four- and two-electron reduction pathway, respectiv...
متن کاملNitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano-Micro Letters
سال: 2021
ISSN: 2311-6706,2150-5551
DOI: 10.1007/s40820-021-00638-y